APPENDIX C. LIRA API SUMMARY
General information

If, when working with SP LIRA 10, you need to export initial data or calculation results to a
non-standard format or perform additional calculations using existing data, and at the same time
you have programming skills, then the information below will be useful to you.

Adding the SP LIRA 10 extension requires two steps:
1. Design an extension based on features.
1. 2. Register the developed extension in the SP LIRA 10.12 environment.

After successful completion of these actions, the Expansions menu item will appear in the
main menu of SP LIRA 10.12, including sub-items for calling the extensions you implemented (Fig.
C.1).

Zoom-In in Representation [nitial Rotate = Selection Avalanche Select Deselect All Nodes ':'.)
Window = Properties View Model [- Filter Choice All and Elements 5

3] . -‘) P & =@ \17-‘;, Apifep
E View and Selection Editors and Structural Design Add Edit Assignment Calculation Analysis and Documentation
e | “ Ny | L) *é) = T, W
O i g gf\ j b T Y Vk [] @ B
t

ect
o

Main View

Fig. C.1. Additional menu Expansions

R You can implement and register many extensions, for each of them a separate menu sub-
item will be generated.

Registering the Extension

[Tpu nepBom 3anycke JINPA 10.12 coznaer ¢aiin ¢ rinobaabHbIMI HaCTPOMKaMHU:

When first launched, LIRA 10.12 creates a file with global settings:
[ApplicationData]+"\\Lira Soft\\LiralO.l12\\VariableEnvironment x86.xml"
[ApplicationData]+"\\Lira Soft\\LiralO.12\\VariableEnvironment x64.xml"

Among other settings, this file contains the addinspath, parameter, which contains the path

to the folder where the extension registration xml files should be located. By default, this is
[ApplicationData]l+"\\Lira Soft\\Liral0.12\\Addins".

Extension registration files must have the following structure:
<?xml version="1.1" encoding="utf-12"?>
<LiraAddIns>
<AddIn Type="PROLONGATION">
<AssemblyPath>path to dll</AssemblyPath>
<CommandName>command name</CommandName>
<CommandDescription> description of command </CommandDescription>
<ImagePath>Path to image of extension icon</ImagePath>
<Vendor>name of organisation</Vendor>
<VendorDescription>description</VendorDescription>
</AddIn>
</LiraAddIns>

I[MPUJIOKEHUE B. KPATKWE CBEJEHNM A O LIRA API

AddIn contains the Type, attribute that can take one of three values: PRIME, PROLONGATION OF
aLL. This attribute indicates in which mode the command of this extension will be available: in the
source data editing mode, in the calculation results analysis mode, or in both modes. In the current
version, only proLONGATION is available.

AssemblyPath IS the absolute path to the =.411 file.

ImagePath absolute path to the file containing the image for the icon in the menu (standard

Size width=24, Height=20).

CommandName S the name of the command in the LIRA 10.12 menu.

vendor and vendorDescription — the information about the developer of the extension.

On startup, LIRA 10.12 adds a menu item for each found and successfully read extension
registration xml file.

Extension Development

The recommended development environment for LIRA 10.12 extensions is Microsoft Visual
Studio 2017. At least two References must be added to the extension project which are the links to
libraries from the LIRA 10.12 installation distribution (1.iraAPI.d11 u FEModel.d11).

The extension project must implement one class, inherited from the interface

LiraAPI.ILiraAPI, described in the dynamic library Liraap1.d11:

public ref class CSamplelLiraAPI : public LiraAPI::ILiraAPI
{
public: virtual LiraAPI::ReturnCodes ExecuteProgram Result
(LiraAPI::IResultLiraAPI “pResultLiraAPI,
int NodesNumber, int ElementsNumber ,
List<List<FEModel::Results Key”">">" pAllCases,
FEModel: :Results Key “pCurentCase);

NodesNumber and ElementsNumber are the number of nodes and elements in the design
model.

pCurentCase — information about the current load case.

pAllcases — information about all load cases available in the task.

pResultLiraAPT — IS an object that allows you to get tables of calculation results.

The object describing the loading has the following form:

ref class FEModel::Results Key
{
//index of loading, index of loading history, DCL number,..
long m_ IndexLoadingCase;
// index of concurrent loading, DCL variant number,..
short m SubIndexLoadingCase;
// index of form, index of step of nonlinear loading, index of moment of
time, ..
long m IndexForm;

}i

IMPMJIOXKEHUE B. KPATKME CBEJJEHUM A O LIRA API

The object L.ist<List<FEModel::Results Key”>">" pAllCases cOntains up to 5 arrays of
the form of List<FEModel::Results Key~>~, each of which describes the list of available load
cases for different types of tables.

pAllcases[0] — load cases and components.

pAllCases[1] — eigenvibrations.

pAllcases[2] — buckling forms from loadings.

pAllcases[3] — design combinations of loads (DCL).

pAllcases[4] — buckling forms from DCL.

LiraAPI::IResultLiraAPT interface in SP LIRA 10.12 has the form:

public interface class IResultLiraAPI

{

virtual int getlLiraApiVersion();

virtual DataTable “get TableResult (FEModel::e Results TableType rtt,
System::Collections: :Generic::List<int> "pObjArr,
System::Collections::Generic::List<FEModel::Results Key "> "“pKeyArr,
array<e Results ColumnType> "%pTypeColumns,
array<System::String *> “%pNameColumns) ;

}i

getLiraApivVersion () function returns the version number of the current LiraApi.
get TableResult (..) function has three input parameters:

FEModel::e Results TableType rtt, System::Collections::Generic::List<int>
*pObjArr, System::Collections::Generic::List<FEModel: :Results Key "> "“pKeyArr

and three output pafmﬂeUHS:array<e_Results_ColumnType> ~"spTypeColumns, array<
System::String "> A%pNameColumnsand DataTable With queryresuhs

System::Collections: :Generic::List<int> "pObjArr is an array of node or element
indices (starting from 0)

System::Collections::Generic::List<FEModel::Results Key "> “pKeyArr is an
array of FEModel: :Results_Key, Objects describing the load cases.

FEModel::e Results TableType rtt IS a type of a table. Detailed information about the
available table types can be found in the LiraAPIHelp.pdf, ile, which is copied to the hard disk in
the [TNsTALLDIR] + "\\Liraar1" folder when SP LIRA 10.12 is being installed.

Extension example
During the installation of SP LIRA 10.12, an archive file with a Visual Studio project is

copied to the hard disk in the [TNsTALLDIR] + "\\Liraap1i" folder, which demonstrates examples
with LiraAPI objects.

